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Abstract—An integral description of the vibration of weakly coupled complex structures as assem-
blages of substructures is proposed. The common integral methods are valid only for the frequency
domain of the global resonances. Outside this domain (i.e. in the high-frequency region). the
vibration localizes within each substructure, which results in considerable spatial absorption of
vibration. The effect of the backward influence of the vibration of secondary structures on the
general vibrational state of the structure becomes evident. The main distinction between low- and
high-frequency vibrations is described. As opposed to the first global resonances which envelop the
whole structure, the high-frequency vibration propagates from the source of excitation.

[. INTRODUCTION

Problems regarding the definition of vibrational states have been considered closely by
mechanical engineers for many years, because vibration is a standard reaction of any real
structure to any external, dynamic load. As remarked in a detailed survey by Noor and
Atluri (1987), the development of methods for dynamical simulation of complex structures
under broad-band frequency loading (high-energy impact, structural penetration, crash-
worthiness, impulsive and stochastic loading, etc.) is one of the urgent questions that should
currently attract the attention of the mechanisist. The complexity of analyzing complicated
mechanical structures such as buildings, ships. acroplanes and spacecraft is caused firstly,
by the complexity of the observed mechanical structure’s shape, then by the collection of
scparate substructures and finally, by the presence of various equipment fixed on carrier
constructions. Besides, the weight of the equipment is comparable to and often exceeds the
weight of the carrier structure. It is also evident, as a result of impressive successes of the
mcthods of computational structural dynamics, that the specific weight of internal equip-
ment will increase permanently. At the saume time, in the literature of present structural
mechanics, the role of the second structure is commonly avoided. [t is also necessary to
take into account that all the structures in question are weakly coupled. All substructures
are weakly coupled to each other, i.e. they are fixed to each other at several points or
localized regions only. Besides, the equipment is weakly coupled to the carrier structure,
the elements of separate devices are weakly coupled to each other and so on. At the same
time we have to keep in mind that cach of the elements of the equipment is a complicated
mechanical system itself.

Let us suppose that we write down the exact boundary-value problem for the description
of the dynamics of the structure, although this presents a problem because of the vagueness
of the boundary conditions. Nevertheless, if we assume that the exact solution has been
arrived at, the very interpretation of this result is a problem too. The ficld of vibration of an
essentially heterogeneous structure under broad-band loading is an extremely complicated
function with respect to time and spatial coordinates, because so many modes are excited
in the structure.

If the structure proves to be so complicated that classical methods of vibration theory
become unacceptable, it is reasonable to use some integral theories. At first sight it appears
to be a paradoxical situation : the more complicated the structure, the simpler its description.
But this is merely the first impression. The same situation exists in the theory of thermal
conductivity where it proves to be sufficient to introduce the temperature, which is the
scalar integral characteristic for describing the three-dimensional. and very complicated,
field of molecular velocities.

t Transmitted by F. Zicgler.
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2. LOW-FREQUENCY AND HIGH-FREQUENCY VIBRATION OF COMPLICATED
MECHANICAL STRUCTURES

Let us consider an actual mechanical structure V, which is formed from a great number
of substructures ¥, with boundary surfaces S, (n = 1,2, ..., N). The substructures are fixed
to one another or to the carrier structure, the latter providing the integrity and rigidity of
the entire structure. The sizes of the substructures V, are much less than that of the structure
V. Nevertheless, each substructure is a complex dynamical system.

The standard way of solving this problem is by expansion in terms of the normal
modes. Let us seek the solution in a similar way:

x

u,(r.r) = kzl i (1) () +u.(r. 1) (1
Here u,(r. 1} is the vector of the absolute displacement of the point with coordinate re V.
u,,(r) is the kth normal mode of substructure V,, ¢,.(?) is the generalized coordinate and ¢
is time. The function u.(r. 1) is usually introduced in problems of mathematical physics to
improve convergence in the vicinity of the boundary (Mindlin and Goodman, 1950). The
reason for the addition of u (r. 1) in eqn (1) is, in principle, different. We want an extremely
simple boundary problem for u.. which allows us to produce an engineer's description of
the field of vibration of the complex structure. Keeping in mind our desire to create
a mathematical description that would bc equally suitable for investigating stationary,
nonstationary, deterministic and random vibration, let us make use of the following spectral
representation;

u(r,t) =J ‘;u,.(r.w)c"""dm. (2)

L

where hereinafter, the same designation for the spectra will be observed. When beginning
to examine the dynamic behaviour of the real system at the whole frequency band, it is
necessary to distinguish precisely two frequency regions with essentially different properties.
The first region is the low-frequency region, Let us agree to consider the low-frequency
region as the frequency domain in which the global resonances of the whole structure appear.
This region is not large. Engineering experience convinces us that the first, second and rare
third resonances only take place in weakly coupled mechanical systems. The low-frequency
region is the region of very low natural frequencies, where the rigidity of a weakly coupled
system is enough to propagate the influence of boundary conditions throughout the whole
structure. Let us designate the natural frequencies of the whole structure Q;, and the global
normal modes of the structure U,(r) (= 1,2.... . J).

However, a region of high frequencies exists as well. In so far as the global resonances
are impossible in the frequency region, it is clear that the vibration localizes within each
substructure or group of substructures, but not within the whole structure. The cause of
such localization is clear : the structure, being weakly coupled, does not possess the necessary
global rigidity. The phenomenon of mode localization was first mentioned by Mandel-
stamm {1929). A detailed survey of mode localization phenomena in structures can be
found in the review paper by Ibrahim (1987). From later papers it is also worth mentioning
the papers by Cornwell and Bendiksen (1989) and Pierre and Cha (1989). Research by the
mechanisists has shown that the phenomenon of mode localization occurs not only for
disordered assemblies of weakly coupled subsystems, but even for periodic structures such
as bladed-disk assemblies. Because of the localization of vibration within the substructures,
we may use expansion (1), where the u,(r) are the normal modes of separate substructures.

The mathematical description of these arguments is as follows:

i U,0Q(w), 0<lu <
u,(r. (l)) =<j=1

u(r,m), |w| >

(3)
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Here Q,(w) is the spectrum of the generalized coordinate Q;(1), corrcspondmg to the normal
mode U;(r). The parameter Q plays the role of a boundary separating the two frequency
regions mentnoned This parameter is hypothetical and cannot be denoted exactly.
Moreover, as will be shown later, there is no necessity to know the exact value of Q since
this value will not be present in the final results.

In spite of the fact that formula (3) is no more than the designation of the spectrum
u.(r, w) in different frequency regions, it is convenient to present u. in the form of the sum
of two functions and rewrite (1) in such a way that

w

J
w0 =Y ui()gu(N+ Y U0Q,(0)+u(r. o). @
j=1

It is assumed that the spectra of the functions Q,() and u(r, ¢}, being localized in the low-
frequency and high-frequency regions respectively, do not intersect. The representation (4)
is twice overdetermined. Hence, to get the boundary problem for all unknown quantities
in (4) it is necessary to impose two additional conditions.

Let us specify the type of the normal modes u,(r). Let us require that the normal
modes vanish on the surface S,, i.e. u,(r) are the nontrivial solutions of the following
boundary-value problem

reV, V:[C- (Vu)]+pwiu, =0,
l’GS,, W = 0. (S)

Here p(r) is the density, C(r) is the tensor of elastic moduli, w, is the kth cigenfrequency
of the substructure V,,. the symbols - and - - denote the operation of scalar and double scalar
multiplication, and V is the Hamiltonian operator. If all normal modes vanish on the surface
S, the function u.(r, r) coincides with the veritable displacement u,(r, £) on the surfaces of
all substructures. Aiming at obtaining the engincering theory for the integral description of
the high-frequency vibration fields, it is natural to require extreme smoothness of the
function u(r, 1) within the whole structure ¥. Coinciding with the veritable displacement on
the surfaces of all substructures, this quantity may be called the body displacement or the
carrier structure displac}cment in the high-frequency region. In the low-frequency region,

the function u.(r,1) = Z U,(r)Q,(r) represents the displacement of the intermediate struc-
'—
ture, according to the terminology of Hale and Meirovitch (1980) and Meirovitch (1980).
The various methods for dynamic simulation are considered in these papers.
The kinetic energy of the structure, considering expansion (4), allows the following
representation :

N l N t , l J , l L.
reis [ piav=1% 5 iaris oiegf paar
2 2 349t

nwl kmt

Nl

+Z i Z f?siQ P\l,,g U, dV-i-Z Z q,,kf pu,cadV. (6)

el kwl jui nm | k=l

The property of normal modes to be orthonormal within each substructure

f punk.un:dyr"‘ 6&.:: J‘ (vunk)..c..(vum)dy= w}k(sk.n
v, v,
and the same property of the global modes

ij,-'U,dV: 8,0 f (VU)--C-+(VU,) dV = Q35,.
v v
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are taken into account. The cross summand j pa- Z U,Q,dV is omitted because u and

n =]

J

Y. U,Q, denote the same function u,, in different frequency regions. In view of the extreme
j=1
smoothness of u and essential heterogeneity of the structure, the next estimate would appear
to be correct:

A N
ﬁm‘x-fuﬂ’= > «a)n-(m”‘[ pdb=% <p><m,,~(mnvn=f<p>a-udr. ©)]
. n=1 n n=l v

where (p) = (1/¥){, p d}"is the average density of the structure. The latter equality in (7)
signifies the standard transition from the Riemann-Stieltjes sum, to the corresponding
integral. The transition is quite permissible for farge N. In the last summand in formula
{6). p(r} and u,(r) are highly oscillating functions of r, while u(r. 1) is an extremely smooth
function with respect to r, which may be placed beyond the integral. If we introduce the
average displacement of the centre of mass of the substructure ¥, when it moves according
to mode k,

<unk> < >" nj; P“nde

expression (6) can be rewritten in the following form:

-y

IERE U A
=3 Z X G+ 5 Z Qi+, _[ﬁ(n)lI'udV+Z Y Yt

2 aal kel jout

+ Z Z <f’> <“n&>‘l‘anf}"k‘ (8)

n-t k-1
Here o, = fv,, pu, U, dV is an unknown cocflicient of expansion of the global mode U,
in terms of the normal modes u,, of substructures, i.e.
I
re Vn U;(r) = Z dnkiumk(r)' (9)
k=1

The representation of the potential energy is obtained in a similar way (Belyaev and
Palmov, 1986):
N 1. 4

Al 1. v . 1
Y L ondat Z Q0+ j(Vu) (O (VW dV+ Y ¥ Y au0ias0,
b ki -y

nathstjat

I\JI—

(10)
Here {C) is a certain mean elastic moduli tensor over the structure.
The work of the external loads is
Z Zp,,kq,,,‘+z P,Q,+ j.g udV+jfudS, (n
nal ko

where the generalized forces p,.. P; are

pnk=J‘g'unde§ P’=fg‘U,dV+Jf'Ude. (12)
s v S
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Using the Hamiltonian variational principle, one obtains the following boundary-value
problem:

reV J,+9Q0,+ Y (dutokdw)an =P, j=12...,J 13)
k=1

V-KC = (VW) -<p) [i'H- i <unk>¢'l'nk]+g =0. (14

J
reV, Gutwigu+ Y (@, +0k0) = pu—<p) (uyd iV, ;

j=1

k=12...,0. n=12...N (15
reS N-[KC):*(Vu)] =f. (16)

where N is the unit vector of the external normal to the surface S.

Tt is now necessary to remember that we have put an additional condition on the high-
frequency vibration (i.e. u). but not on the low-frequency vibration. Nevertheless, if U(r)
is the global mode, indeed, the equation for generalized coordinate Q,(f) must be the
following:

Q;+Q/2Q/ =P, )

Taking into account (13) the latter equation is equivalent to the conditions

Z g Gk + W) = 0. (18)

k=

Relations (18) are actually a system of equations to find a,,, or U,(r) with the help of (9).
Formula (9) is a classical formula for an arbitrary function to be represented as a series of
orthonormal functions u,,(r), within each substructure V,. This system of functions is
complete and in some way, a natural onc for the substructure in question. Nevertheless,
the search for the solution in the form (9) is the most unsuccessful and unnatural one to
work with computationally. In other words, this approach is not constructive (Hale and
Meirovitch, 1980). Really, first : the definition of the substructural normal modes as a result
of solving the eigenvalue problem, is a serious task and is in no way simpler than solving the
problem of structural global modes. Second : the system of the substructure eigenfunctions
obtained is so complicated that it is impossible to work with, in practice. Third: the
boundary-value problem for the substructure is not unique, i.e. any boundary condition
would be doubtful (Meirovitch, 1980).

At the same time, as noted by Hale and Meirovitch (1980) and Meirovitch (1980), for
finding the first several global modes of the complicated mechanical structure, the limited
set of suitable spatial functions (so called “admissible functions”) is sufficient. Moreover,
these functions in the energy space of substructures are not required to satisfy any boundary
conditions in the internal boundarics of the substructure. Hence, they may be chosen
according to any suitable principle, for instance, convenience of interpretation. To create
the theory in question, it was convenient to accept the condition that the normal modes
vanish at the boundaries of the substructures. This argument may be considered as a type
of foundation for choosing the normal modes set u,,(r), as a nontrivial solution of the
boundary-value problem (5). In any case, it is excessive to try to obtain the global normal
modes using the expansion (9). The global normal modes U (r) and global eigenfrequencies
Q, may be obtained using methods of computational structural mechanics; for instance
BEM, FEM, substructure synthesis methods, etc. (Noor and Atluri, 1987; Meirovitch,
1980).
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Let us assume that the external loads allow the following spectral decomposition :

+ T

gr.1) = J+ ) gr.w)e” dw; f(r,0) = j f(r, w) e dw. (19)

—x -0

Then the boundary-value problem (14)-(17) for the spectra u(r, w), @ {w), q.(t) has the
form

reV (-o*+2¥,Qw+Q)Q;=P; (20)

V-[KC) - (Vu)1+<P>w’(u+k}E (u..k)an)-*-g =0, @n

J
reV, ( —w’+2i¢,,kwnkw+w3k)<q~k+ Y a,.uQ;) = P+ 0p) Cun) ¥, (22)
=1

reS N-KC)--(Vu)] =f. 23)

Here ., ¥, are the dimensionless coefficients of damping of the corresponding normal
modes of the substructures and the whole structure. Obtaining ¢, from (20), (22) and
substituting it into (21), we get the following differential cquation for high-frequency
vibration:

V-KC* (Vu)]+w'A(w) u+g. = 0. (24)
Here
- 2 < Vpnkr<unkw> s 2 J (:;ank’(unk)
B =80T Y o Yot PO L T iwamrar )
_ - () {4 ¥,
A@) = (o) [E+<p> e T +w3*], @6)

where g.(w) is the spectrum of the effective load per unit volume, and A(w) is the tensor of
mass inertia of the structure. We accept the hypothesis of this tensor isotropy (Belyaev and
Palmov, 1986), because actual mechanical structures have such a complicated composition
that it is impossible to find the anisotropic axis of the substructures’ spectral characteristics.
In conclusion, the boundary-value problem for the integral description of the structure’s
vibration is

w(60) = T U/00,(@)+u(r0) @7

reV (—o*+2¥Qu+Q)Q,; =P, j=12,...,J (28)
V- KC> - (Vu)] +w?A(w)u+g. =0, (29)

reS N-[KC)--(Vu)] =T (30)

where

Z wluudCuv, ]

A(w) = {A(w) " E = (p)[l+<p) k; N + 20,0+ 0L (&1))
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A(w) is formed by an infinite number of resonance curves corresponding to the vibration
of a single-degree-of-freedom system. Let us place the components of eqn (31) in ascend-
ing order of natural frequencies. The width of each resonance curve is 2¢/,,w, at a level
l,’\f.’: from the resonance value. If the intervals between adjacent natural frequencies are
less than or approximately coincide with the width of the resonance curves

AWy = Wpier ) = Ok S Yok Dic + Wk 1 1 Qi 14 (32)

or because Wy, | T Wy

< Wi 33

the resonance curves in (31) merge, forming a smooth frequency function. In this case, eqn
(31) can be replaced by the integral over the high-frequency region

A(w) = {p) [I +w’ J: b dx ] (34)

—* +2ipaw+2°

where a locally smooth function of the natural frequency distribution d(a) is introduced,
so that

(b((’)nk )A(”nk = =<p> <unk> : <unk> Vn' (35)

We have assumed that the spectral propertics are identical within the whole structure, since
the spectral characteristics of the structure can only be obtained as a result of certain
experiments of excitation of narrow-band or single frequency vibration of the whole struc-
turc. Instcad of (34), we can now write

Aw) = {p>{d(w) —ix(@))? (36)
where d(w) and rx(w) are nondimensional frequency-dependent paramecters. As shown by

Belyaev and Palmov (1986), the parameter d(w) allows the following estimation : d(w) = 1.
We obtain, after comparing (34) and (36),

r(w) = o’ J:L bad(z) d 37

8 (11 _wl)l +4¢2a2w2 ¢

Assuming a small valuc of damping (Y « 1) and local smoothness of ®(x), integral (37)
can be estimated by methods of the random vibration theory (Bolotin, 1969), i.c.

k(W) = nwd(w). (38)

From this last formula we can see that x(w) and consequently, the value of absorption of
high-frequency vibration, does not depend on the damping . Actually, this coefficient is
absent in eqn (38). The value of absorption is determined, first of all, by the distribution
function ®(=). It is natural because the internal degrees of freedom act as a set of dynamical
absorbers, with respect to the carrier structure. If the damping is not small, the resonance
curves corresponding to the internal degrees of freedom merge. In this case, the considerable
spatial absorption of vibration for the whole high-frequency region is guaranteed. This
effect was mentioned by Der Kiureghian and Igusa (1987) by way of a numerical example
and parametric study.
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3. AN EXAMPLE: THE LONGITUDINAL VIBRATION OF AN EXTENDED STRUCTURE

The solution of the boundary-value problem is demonstrated in the following example.
Let us consider an extended complex mechanical structure, where the excitation of the
structure is such that longitudinal waves predominate. In this case the structure can be
represented as a rod. Let the rod’s length be /, the cross-section x = / be under a force F(1)
and the cross-section x = 0 be free. The global natural frequencies Q; and normal modes
U,(x) are assumed to be calculable using a method of structural mechanics (Meirovitch,
1980). The volume load is absent (g = 0), hence g, = 0. The boundary-value problem (27)-
(30) can thus be written as

u(x,w) = i U (x)Q )+ u(x, w) (39)
=1
U () F(w) (40)

9= et

d’ - )
Cd—\ﬁ + M@ —ix)u=0 @1
due du
- -— = i, [ o= _= 2
x=0 e 0; x={! C e Flw), (42)

where Cis the longitudinal rigidity and Af is the mass of the length unit. The solution of
the boundary problem (41), (42) is as follows :

Flw) _cos )._x

cr sinif (43)

wx,w) = —

where 4 = (m/a)(3 —ix) is the wave numberand ¢ = /C/M = \/2‘7; is the velocity of the
energetic centre of the propagating disturbance.
Taking into account formula (2), the field of the structure’s acceleration looks like:

N A L U, a
f.(x, 1) = f ) ~w Fw) EI BRpYEIG YL o WA, " Col=in)

cos g (0—ix)x
e“ dw. (44)

sin @ (0 —ix}l
a

Let us assume that the external load is a stationary random function having spectral
density Sg{w). The spectral density of the acceleration may be calculated according to
standard methods of the random vibration theory

cos E-;—) (6 —ix)x :
T . {45)
sin — {8 —ix){
a

J U U (x)
; e o . i L —
Si(vow) = 'Se(w)| Y —0 +2¥,Qw+s  Cw(d—ir)

i=
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After separating the real and imaginary parts, the result (45) can be rewritten as

o , , 2
S,;(G)) = w‘SF(w) Z U_l(l) U](x)

w
cos — (0 +ix)x
_a a s UMUm
Col (5+in) sin (6 +in)l /- —w 2 Qo+
w .
cos - (0—ix)x ; U (U0
+ —0’ - 2Y Qu+Q;
(6--ix)sin§:—(r5—ix)1 =t 1 !
2wKx 2wdx
ot ch +cos
PO GTERD)  dond 2adl (46)
ch— = —cos =~

The latter formula is inordinately unwieldy, but it may be possible to simplify. For this
purpose, it is necessary to notice that even for the smooth function Sy(w), the spectral
density of the acceleration S;{w) is a highly oscillating function of frequency in the high-
frequency region because of the several trigonometrical functions. [t is reasonable to average
the right part of the dependence (46) within some frequency range using, for instance, the
averaging method suggested by Palmov (1976) for a viscoelastic rod.

Let us consider the last term in (46). In the high-frequency region the hyperbolic
functions are large and the additions from the trigonometrical functions are negligible, and
only lead to the “unnceded™ complication of smooth dependence. To average over the
period of each trigonometrical function, we replace the term

2uKx 2wdx
ch - +cos
o
2wl 2wdl
ch -

by the following integral :

e dz, P [  2wkx )
2_7.‘.“-. 2wnl 2r ), (Ch . tcosz; fdo. 47
ch —— —cos =

-1

The variables =, = 2wd!/a and z, = 2wdx/u may be considered as independent because the
values of x and / are generally incommensurable. The result of integration is the following
(Gradshtein and Ryzhik, 1980):

ch 2wkx

20nl

sh ——

The terms in the square bracket in (46) vanish after analogous averaging. The terms
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corresponding to the global vibration of the structure are not averaged, since they represent
the smooth frequency dependence in the high-frequency region. Hence. the dependence
(46). smoothed within several oscillations, may be written as

RITTN ¢
- [
! UXHU:(x) a 4
S' = ,4 ! 5 / BN d Sy N 2252 3
{0} = " Se(w) :{:‘ (~w~+Q;)-+4\{’;Q;w’ C - (0-+xr") sh dwnl
a

(48)

where it has been taken into account that the first resonance curves of the structure are
distant from each other.

The result (48) may be obtained just from (43) if one remembers that there are low-
frequency and high-frequency regions [see (3)]. After averaging in the high-frequency
region. formula (45) can be shown to be

-

: Uux
5 ! ! 51 . < Q
oot + 2 Qo+ Q; @
Su@) = ' Se(w) ) . enom (49)
a a
Cw(0°+x%) | dowi’ w >4
sh - -

.

It is now simple to obtain the result (48) by joining the formulae in (49) and taking into
account the absence of the mutual correlation of the frequency regions.

The more complicated way chosen by us, allows for the solution of the problem without
using the boundary frequency Q. Hence, there is no need to get the precise value of Q. The
important thing for us is the actual existence of such a parameter, which may be implicitly
used for creating the theory and also in simplifying practical problems.

4. SOME NUMERICAL RESULTS

Let us suppose that some complex mechanical system may be represented as a tube of
the length /= 10 m, with diameter D = 2R = | m. Let the longitudinal rigidity of the
system be concentrated in the tube’s shell of thickness # = 2x 107! m. Let the Young’s
modulus of the material bc £=7x10" N m~* Let us supposc also, that all the
contents of the system are fixed to the tube’s shell. Let the average density of the system
be {p) = 10" kg m~*. For the suke of simplicity, we assume that the first global
modes and natural frequencies coincide with the corresponding ones of a continuous
homogencous rod, having longitudinal rigidity C = 2rhRE = 4.40 x 10" N and mass per
unit length M = nR%p = 7.85x 10° kg m~"'. The eigenfrequencies and the orthonormal
modes of the longitudinal vibration of a free rod are

n |C 2 X
Q,-—-.ji\/ﬁ. Uix) = mcosjni. {50)

Let us suppose that only two first global resonances are possible in this system. The simplest
calculation gives the following values of global eigenfrequencies: f, = (1/27)Q, = 37.4 cps,
fr=2f, = 74.8 cps.

The dependence of the square of the absolute value of the transfer function

S.(x. )

IHI~= SF((I)) )
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Fig. 1. Square of the absolute value of the transfer function as a function of x// for various
frequencies.

with respect to x and cyclic frequency f = (1/2n)w is represented in Figs 1 and 2. The
following values of damping are assumed: § = 0.05, x = 0.2 (Palmov, 1976). The depen-
dences of |H|* on x/I for f = f, (low-frequency region) and for f = 5/, (high-frequency
region) are presented in Fig. 1. The explicit difference is evident. In the low-frequency region
the natural modes are easily observed. The rod’s ends vibrate with the same amplitude, in
spite of the fact that only one end is excited. The essential reduction of the level of vibration
is typical for the high-frequency region. This reduction is an obvious result of mode
localization. This effect occurs even in solid physics, e.g. the metallic conductivity is reduced
because of localization of electron eigenstates (Anderson, 1958).

Let us now have a look at Fig. 2, where the dependence of [H|* on frequency for the
cross-section x = 0.9/ is shown. The classical resonance curves are far from cach other in
the low-frequency region whereas such explicit resonance curves are impossible for a high-
frequency vibration. In the high-frequency region the mechanical system has the amplitude-
frequency characteristics which are typical of systems with a continuous spectrum of
eigenfrequencies. For instance, infinite bodies have such spectra. In order to better observe
this similarity, let us consider the sume rod, but with cross-section x = 0 fixed. Instead of
(48), (50) we now have

1 UXDHU3(x) a’ a
R = 'S, S ! ot ¢
Sle) = 'S () ,g.(—w2+nf)=+4w,?n;~’m1 C (0 +17%)

C 2 . .
Q;(f-a?\/«;. U = [osinG= b7 (s1)

The dependences of |H|? on x and [ are presented in Figs 3 and 4. Comparison of transfer
functions demonstrates the essential change in the low-frequency region. In the high-
frequency region the shapes of the curves practically coincide ; some insignificant changes
are observed only near the end x = 0, but the values of |H|? are negligible there. Hence,
the field of high-frequency vibration is not actually sensitive to a boundary condition at the
unloaded end of the rod.

6x10°8

4x10=6 p

IH? (hg~2)

221078 |~

H }
] 100 200 300
ficps)

Fig. 2. Square of the absolute value of the transfer function as a function of frequency.
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Fig. 3. Square of the absolute value of the transfer function as a function of x/! for various
frequencies.
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Fig. 4. Squarc of the absolute value of the transfer function as a function of frequency.

We may now formulate the main distinction between low- and high-frequency
vibrations. In the low-frequency region, the global natural frequencies of the structure form
the discrete spectrum, which is very sensitive to the boundary conditions. For high-frequency
vibration, a complex mechanical structure appears to be an infinite body. The continuous
spectrum of cigenfrequencies and insensitivity to the boundary conditions on the remote
boundary surfuce confirm this conclusion. In other words: the low-frequency vibration
envelops the whole, complex mechanical structure ; the high-frequency vibration propagates
from the source of excitation.

5. CONCLUSIONS

An integral description of the vibration of complex mechanical structures is proposed.
It was shown that there are two frequency regions with essentially different properties. In
the low-frequency region, the vibration envelops the whole structure and for dynamic
simulation, it is reasonable to use common methods. These are actually integral ones. A very
specific region of the high-frequency vibration was examined. In this region a structure acts
as a mechanical system with a continuous spectrum of eigenfrequencies. The internal degrees
of freedom of secondary structures correspond to a set of dynamic absorbers with respect
to primary structure, thus providing considerable spatial absorption of the high-frequency
vibration. The secondary structures may be damaged, since they absorb energy on their
own cigenfrequencies. This is the main reason for paying attention to the high-frequency
vibration of complex structures.
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